
TheUseof$Text$Retrievaland
Natural$Language$Processingin

So:ware$Engineering$

Venera&Arnaoudova&

Andrian&Marcus&

&
Sonia&Haiduc&

&
Giuliano&Antoniol&

TB$outline$
•  Introduc6on&
•  Background&on&IR&and&NLP&
•  SE&tasks&using&IR&and&NLP&
–  Task&defini6on&
–  Input&
–  Output&
–  Preprocessing&&
–  Technique&&
–  Evalua6on&
–  Tools&used&

•  Conclusion&and&future&direc6ons&

Textual$Informa@on$in$So:ware$
•  Captures&concepts&of&the&problem&domain,&developer&

inten6ons,&developer&communica6on,&etc.&

•  Found&in&many&soMware&ar6facts:&
–  Requirements&

–  Design&documents&

–  Source&code&(iden6fiers,&comments)&

–  Commit¬es&

–  Documenta6on&

–  User&manuals&

–  Q/A&websites&
–  Developer&communica6on:&emails,&chat,&tweets&

–  Etc.&

Text$Retrieval$

•  Informa(on)Retrieval)(IR):&the&process&of&ac6vely&
seeking&out&informa6on&relevant&to&a&topic&of&
interest&(van&Rijsbergen)&

•  Text$Retrieval$(TR):$a&branch&of&IR&where&the&
informa6on&is&stored&in&text&format&
–  Typically&it&refers&to&the&automa6c&retrieval&of&
documents&

– Document&X&generic&term&for&an&informa6on&holder&
(book,&chapter,&ar6cle,&webpage,&class&body,&method,&
requirement&page,&etc.)$

Natural$Language$Processing$

•  Refers&to&the&use&and&ability&of&systems&to&
process&sentences&in&a&natural&language&such&
as&English&(rather&than&in&a&specialized&
ar6ficial&computer&language&such&as&C++)&

•  Combines&techniques&from&of&computer&
science,&ar6ficial&intelligence,&and&
computa6onal&linguis6cs,&probability&and&
sta6s6cs&&

TRandNLPinSo:ware$Engineering$

•  Applied&to&over&30&different&SE&tasks&

o  Traceability&Link&Recovery&
o  Feature/concept/concern/bug&loca6on&
o  Code&reuse&
o  Bug&triage&
o  Program&comprehension&

o  Architecture/design&recovery&
o  Quality&assessment&and&measurement&

o  SoMware&evolu6on&analysis&
o  Defect&predic6on&and&debugging&
o  Automa6c&documenta6on&

o  Tes6ng&

o  Requirements&analysis&

o  Restructuring/refactoring&
o  SoMware&categoriza6on&
o  Licensing&analysis&
o  Impact&analysis&

o  Clone&detec6on&
o  Effort&predic6on/es6ma6on&

o  Domain&analysis&

o Web&services&discovery&

o  Use&case&analysis&
o  Team&management,&etc.&

0&

10&

20&

30&

40&

50&

60&

70&

80&

90&
1
9
8
7
&

1
9
8
8
&

1
9
8
9
&

1
9
9
1
&

1
9
9
2
&

1
9
9
7
&

1
9
9
9
&

2
0
0
0
&

2
0
0
1
&

2
0
0
2
&

2
0
0
3
&

2
0
0
4
&

2
0
0
5
&

2
0
0
6
&

2
0
0
7
&

2
0
0
8
&

2
0
0
9
&

2
0
1
0
&

2
0
1
1
&

2
0
1
2
&

2
0
1
3
&

2
0
1
4
&

2
0
1
5
&

Publica@onsperyear$

What%is%Text%Retrieval?%
•  Basis%for%internet%search%engines%
•  Search%space%is%a%collec2on%of%documents%(“bags%
of%words”)%

•  Search%engine%creates%a%cache%consis2ng%of%
indexes%of%each%document%–%different%techniques%
create%different%indexes%

•  No%predefined%grammar%and%vocabulary%
•  Many%TR%models%are%not%intui2ve%for%humans%G>%
will%not%understand%well%the%results%of%TR%
approaches%

%
1%

Terminology%

•  Document%=%unit%of%informa2on%–%bag%of%words%

•  Corpus%=%collec2on%of%documents%

•  Term%vs.%word%–%basic%unit%of%text%G%not%all%terms%
are%words%

•  Query%
•  Index%
•  Rank%
•  Relevance%

2%

Document%Granularity%

•  What%is%a%document%in%source%code?%
– Depends%on%the%problem%and%programming%
language%

– Class,%method,%func2on,%interface,%procedure,%etc.%

•  What%is%a%document%in%other%ar2facts?%
– Depends%on%the%ar2fact%and%problem%
–  Individual%requirements,%bug%descrip2ons,%test%
cases,%eGmails,%design%diagrams,%etc.%

3%

Most%Popular%Models%Used%in%SE%

•  Vector%Space%Model%(VSM)%

•  Latent%Seman2c%Indexing%(LSI)%

•  Okapi%BM25%and%BM25F%

•  Latent%Dirichlet%Alloca2on%(LDA)%

•  Probabilis2c%LSI%(pLSI)%

4%

Term%Weights%and%Document%
Similari@es%in%VSM%

•  Term%weight%=%Local%weight%*%Global%weight%

•  Most%common%weight:%aGidf%

%

•  Doc%Similari2es:%Cosine,%Dice,%Jaccard%

Global%weights:%
•  binary%
•  idf%
•  entropy%

Local%weights:%
•  binary%%
•  a%
•  log%(a)%

A%Typical%TR%Applica@on%
1.  Build%corpus%
2.  Index%corpus%–%choose%the%IR%model%
3.  Formulate%a%query%(Q)%
–  %%Manual%or%automa2c%

4.  Compute%similari2es%between%Q%and%the%
documents%in%the%corpus%(i.e.,%relevance)%

5.  Rank%the%documents%based%on%the%similari2es%
6.  Return%the%top%N%as%the%result%list%
7.  Inspect%the%results%
8.  GO%TO%3.%if%needed%or%STOP%

6%

Using%TR%in%SE%–%Op@on%1%

•  Formulate%the%SE%problem%as%a%text%retrieval%
problem%

•  Convert%the%sogware%ar2facts%into%a%text%
corpus%

•  Choose%the%TR%model%best%suited%to%the%
problem%

7%

SE%as%TR%

•  Concept/concern/feature%loca2on%in%sogware%
•  Traceability%link%recovery%between%sogware%ar2facts%
•  Impact%analysis%

•  Sogware%reuse%
•  Bug%triage%
•  Requirements%analysis%%

•  Etc.%

8%

Using%TR%in%SE%–%Op@on%2%

1.  Analysis%of%the%textual%informa2on%in%sogware%

2.  Convert%the%sogware%ar2facts%into%a%text%
corpus%

3.  Choose%the%TR%model%best%suited%to%the%
problem%

4.  Compute%similari2es%between%documents%

5.  Perform%analysis%based%on%these%measures%

9%

SE%as%Text%Analysis%

•  Sogware%categoriza2on%
•  Refactoring%and%restructuring%
•  Reverse%engineering%
•  Bug%triage%
•  Clone%detec2on%
•  Requirements%analysis%

•  Defect%predic2on%
•  Change%impact%analysis%

•  Etc.%
10%

Natural'Language'Processing'(NLP)

• Text&is¬&only&a&bag&of&words..

“a&cat&is&chasing&the&fish” “a&fish&is&chasing&the&cat”

{‘a’,&’chasing’,&‘cat’,&’&fish’,&’is’,&’the’}

NLP'Techniques

• Language&Models&(LM)&

• Syntactic&analysis&

• Semantic&analysis&&

• Sentiment&analysis&

• Emotion&analysis

Language'Models'(LM)

• Assign&probabilities&for&sequences&of&words&

Corpus:&“I&am&smiling”,&“You&are&happy”,&“We&are&happy”&&&&&&& 
&&&&&&&&&&&&&&&“I&am”&happy?&&O>&&&P(happy|I&am)?&

uniOgram:&~&P(happy)&&

biOgram:&~&P(happy|am)&

triOgram:&~&P(happy|I&am)  
…  
nOgram

….&happy

….&am&happy

….&I&am&happy

Syntactic'Analysis

• Tagging&words&with&their&

respective&PartOOfOSpeech&

(POS)

Stanford CoreNLP

Output format: Visualise

Please enter your text here:

get full name

Submit Clear

Part-of-Speech:

get full name
VB JJ NN

1

Named Entity Recognition:

get full name1

Coreference:

get full name1

Basic dependencies:

get full name
VB JJ NNamod

dobj

1

Collapsed dependencies:

get full name
VB JJ NNamod

dobj

1

Collapsed CC-processed dependencies:

get full name
VB JJ NNamod

dobj

1
Visualisation provided using the brat visualisation/annotation software.

Copyright © 2011, Stanford University, All Rights Reserved.

VB:&verb  
JJ:&adjective 
NN:&noun

Syntactic'Analysis

• Tagging&words&with&their&

respective&PartOOfOSpeech&

(POS)

NP:&noun&phrase 
VP:&verb&phrase

Stanford CoreNLP

Output format: Visualise

Please enter your text here:

get full name

Submit Clear

Part-of-Speech:

get full name
VB JJ NN

1

Named Entity Recognition:

get full name1

Coreference:

get full name1

Basic dependencies:

get full name
VB JJ NNamod

dobj

1

Collapsed dependencies:

get full name
VB JJ NNamod

dobj

1

Collapsed CC-processed dependencies:

get full name
VB JJ NNamod

dobj

1
Visualisation provided using the brat visualisation/annotation software.

Copyright © 2011, Stanford University, All Rights Reserved.

VB:&verb  
JJ:&adjective 
NN:&noun

NPVP

• Chunking

Syntactic'Analysis

• Identifying&grammatical&relations&between&words

Stanford CoreNLP

Output format: Visualise

Please enter your text here:

get full name

Submit Clear

Part-of-Speech:

get full name
VB JJ NN

1

Named Entity Recognition:

get full name1

Coreference:

get full name1

Basic dependencies:

get full name
VB JJ NNamod

dobj

1

Collapsed dependencies:

get full name
VB JJ NNamod

dobj

1

Collapsed CC-processed dependencies:

get full name
VB JJ NNamod

dobj

1
Visualisation provided using the brat visualisation/annotation software.

Copyright © 2011, Stanford University, All Rights Reserved.

amod:&adjectival&modifier&

dobj:&direct&object

Semantic'Analysis

• Identifying&semantic&relations&between&words

visible

seeable

hidden

antonym&of

synonym&of

Semantic'Analysis

• Identifying&semantic&relations&between&words

visible

seeable

hidden

antonym&of

synonym&of

length

size

hyponym&of

Semantic'Analysis

• Identifying&semantic&relations&between&words

visible

seeable

hidden

antonym&of

synonym&of

length

size

hyponym&of

distance altitude

hypernym&of

Sentiment'Analysis

• Classify&the&polarity&of&a&text 

“I&love&this&movie&but&I&really&hate&the&main&actor.”&

 
Positive&sentiment&strength:&3&

Negative&sentiment&strength:&O5&

positive negativebooster

+3 O1 O4

Emotion'Analysis

• Joy:&“That’s&great&work&guys!”&

• Anger:&“&I&will&come&over&to&your&work&and&slap&

you!”&

• Sadness:&“Sorry&for&the&late&response.”&

• …

Parrott's'FrameworkParrott’s Framework

Crea%ng(a(Corpus(of(a((
So/ware(System(

•  Parsing(so*ware(ar-facts(and(extrac-ng(documents(

–  (corpus(–(collec-on(of(documents((e.g.,(methods)(

•  Text(normaliza-on((white(space(and(non?textual(tokens(
removal,(tokeniza-on)(

•  SpliCng:(split_iden-fiers(and(SplitIden-fiers(

•  Stop(words(removal(

–  common(words(in(English,(standard(func-on(library(names,(
programming(language(keywords(

•  Stemming(

((?>(So/ware(Lexicon(

Parsing(Source(Code((
and(Extrac%ng(Documents(

•  Documents(can(be(at(different(granulari-es((e.g.,(

methods,(classes,(files)(

•  Documents(can(be(at(different(granulari-es((e.g.,(

methods,(classes,(files)(

Parsing(Source(Code((
and(Extrac%ng(Documents(

Source(Code(is(Text(Too(

public void run IProgressMonitor monitor throws
InvocationTargetException InterruptedException if m_iFlag

processCorpus monitor checkUpdate else if m_iFlag
processCorpus monitor UD_UPDATECORPUS else

processQueryString monitor if monitor isCancelled throw
new InterruptedException the long running

Text(Normaliza%on(

•  Break(up(the(text(in(words(or(“tokens”(
•  Ques-on:(“what(is(a(word”(?(

•  Problem(cases(
– Numbers: ((“M16”,(“2001”(

– Hyphena-on:((“MS?DOS”,(“OS/2”(

– Punctua-on: ((“John’s”,(“command.com”(

– Case: (((“us”,(“US”(

– Phrases: ((“vene-an(blind”(

Spli@ng(

•  SpliCng:(decomposing(iden-fiers(into(their(
compound(words(

•  Iden-fiers(may(use(of(division(markers((e.g.,(
camelCase(and(_)(

•  Examples:((
–  getName(?>(‘get’,(‘Name’(

–  getMAXstring(?>(‘get’,(‘MAX’,(‘string’(

–  ASTNode(?>(‘AST’,(‘Node’(
–  account_number(?>(‘account’,(‘number’(

–  simpletypename(?>(‘simple’,(‘type’,(‘name’(

Stop(Words(

•  Very(frequent(words,(with(no(power(of(
discrimina-on((e.g.,(language(keywords)(

•  Typically(func-on(words,(not(indica-ve(of(
content(

•  The(stop(words(set(depends(on(the(document(
collec-on(and(on(the(applica-on((e.g.,(
language(keywords)(

Stemming(

•  Iden-fy(morphological(variants,(crea-ng(“classes”(

– system,(systems(

–  forget,(forget-ng,(forgetful(
– analyse,(analysis,(analy-cal,(analysing(

•  Replace(each(term(by(the(class(representa-ve(

(root(or(most(common(variant)(

Abbrevia%ons(expansion(

•  Expand(abbrevia-ons(to(the(corresponding(full(
word(

•  Single(versus(mul-?word(abbrevia-ons(

•  Examples:((

–  mess(?>(‘message’((

–  src(?>(‘source’(
–  regex(?>(‘regular(expression’(
–  ASCII(?>(‘American(Standard(Code(for(Informa-on(Interchange’(

–  auth(?>(‘authen-cate’(OR(‘author’(

Improving*the*Quality*of*the*Code*Lexicon

✓ Identifying*poor*quality*identifiers*

✓ Identifying*naming*inconsistencies

TA
SK

Identifying*Poor*Quality*Identifiers

• Task:*Identifying*identifiers*that*are*difficult*to*
understand,*unclear,*meaningless,*etc.*

• Examples:*

• aSz*

• foo*

• Variables*path*and*absolutePath**

• Variables*file*of*type*File*and*String

SU
B
TA

SK

Identifying*Poor*Quality*Identifiers

• Source*code*

• Mapping*between*program*identifiers*and*
domain*concepts*

• Standard*lexicon*dictionary*(a*dictionary*of*
allowed*terms)*

• Synonym/abbreviation*dictionary

IN
P
U
T

Identifying*Poor*Quality*Identifiers

• Identifiers*with*poor*quality*

• Suggestions*to*improve*the*identifiersO
U
T
P
U
T

Identifying*Poor*Quality*Identifiers

• Splitting

P
R
E
P
R
O
C
ES

SI
N
G

Identifying*Poor*Quality*Identifiers

• NonRstandard*lexicon*based*on*concepts 

aCopy printReplica

foomeaningless:*

synonyms:*

abbreviations:* aSz //*a:*array,*Sz:*size

and

T
EC

H
N
IQ

U
E

Identifying*Poor*Quality*Identifiers

• Inconsistencies*based*on*the*concepts*(cont.)

Homonym: file
file*name

file*pointer

Identifier*space Concept*space

Synonym:
file file*name

Identifier*space Concept*space

file_name

T
EC

H
N
IQ

U
E

Identifying*Poor*Quality*Identifiers

• Inconsistencies*based*on*the*concepts*(cont.)

Animal

Monkey Violin

No*hyponymy*in**
a*class*hierarchy:*

Conciseness*
violation: file file*name

Identifier*space Concept*space

T
EC

H
N
IQ

U
E

Identifying*Poor*Quality*Identifiers

• Inconsistencies*based*on*the*concepts*(cont.)*

• Identified*using:*

• identifiers*to*concept*mapping*

• identifier*inclusion*(syntactic*conciseness*and*
consistency)*

• ontology*

• number*of*characters*

• string*similarity

T
EC

H
N
IQ

U
E

Identifying*Poor*Quality*Identifiers

class:

method:

Compute

addition

//*must*be*a*noun

//*must*be*a*verb

• Syntactical*standardization

T
EC

H
N
IQ

U
E

…

FunctionId ::= [Context] (Action PropertyCheck Transformation)
Context ::= Qualifier noun
Qualifier ::= (adjective noun)*
Action ::= SimpleAction ComplexAction
SimpleAction ::= DirectAction IndirectAction
ComplexAction ::= ActionOnObject DoubleAction
IndirectAction ::= Qualifier noun ActionSpecifier Head word = noun
DirectAction ::= verb ActionSpecifier Head word = verb
ActionOnObject ::= verb Qualifier noun

ActionSpecifier Head words = verb , noun
DoubleAction ::= (DirectAction ActionOnObject)

Head words from DirectAction and/or ActionOnObject
ActionSpecifier ::= (adjective adverb preposition Qualifier noun)*
PropertyCheck ::= ”is” Qualifier (adjective noun)

ActionSpecifier Head word = adjective noun
Transformation ::= Source TransformOp Target Head words from Source and Target
Source ::= Qualifier (adjective noun) Head word = adjective noun
Target ::= Qualifier (adjective noun) Head word = adjective noun
TransformOp ::= ”to” ”2”

Figure 3. Grammar for the language of the function identifiers. The main classes of identifiers are in bold face, and
head words are specified for them.

4 Syntactical standardization

The structure of program identifiers, i.e., the organiza-
tion of the words in each identifier according to their gram-
matical function, can also be standardized. A grammar can
exploit the classification of identifiers according to the kind
of properties they are intended to express, and for each iden-
tifier category (main class in the following), a grammatical
structure is defined, which specifies the ordering of differ-
ent words (verbs, nouns, etc.) and the places where optional
terms can be inserted (qualifiers, context specifiers, etc).
A grammar for program identifiers can be introduced as

a company standard. A second approach is to derive it from
existing code, by selecting “good” examples and using them
as the basis for the grammar, and then to enforce its usage
within the company. We experimented the latter approach,
trying to derive a grammar for the identifiers of functions
from the 10 C programs in Table 1. We concentrated on
the C language and on the identifiers of function names, but
the same approach can be easily applied in the context of
a different programming language and/or different kinds of
identifiers.
An initial grammar was first produced by simply reading

several examples of function identifiers and trying to model
the features that seemed to recur more frequently. The
grammar was then refined through successive iterations. On
each iteration the performances of the grammar were evalu-

ated in terms of coverage and ambiguity, and proper correc-
tive actions were taken to keep their improvement balanced.
The coverage of a grammar for a non formal language is the
ratio of strings of the language for which at least one syntac-
tic derivation can be obtained from the grammar. The gram-
mar ambiguity is the possibility to produce a given string of
the language with more than one syntactic derivation. In-
creasing coverage and decreasing ambiguity are contrasting
objectives, to be carefully balanced: although a grammar
which does not impose many constraints on the identifier
structure may in principle cover a high number of cases, it
is likely to be ambiguous and of little usage in the improve-
ment of the identifier structure.
After two major iterations on the initial grammar (and

several micro-iterations), the productions in Figure 3 re-
sulted. The meta-symbols used in Figure 3 have a straight-
forward interpretation: [] are used for optional symbols,
for the alternatives, an exponent gives the number of repe-
titions, while * indicates an arbitrary number of repetitions.
Terminal symbols (tokens in the following) are represented
through a lexical type inside angular brackets or directly as
strings inside double quotes. Head words, shown within
curly brackets, are the terminal symbols of the production
holding relevant semantic information.
According to the grammar in Figure 3, a function iden-

tifier may be prefixed with an optional, possibly qualified,
context, representing information on the general operating

FunctionId ::= [Context] (Action PropertyCheck Transformation)
Context ::= Qualifier noun
Qualifier ::= (adjective noun)*
Action ::= SimpleAction ComplexAction
SimpleAction ::= DirectAction IndirectAction
ComplexAction ::= ActionOnObject DoubleAction
IndirectAction ::= Qualifier noun ActionSpecifier Head word = noun
DirectAction ::= verb ActionSpecifier Head word = verb
ActionOnObject ::= verb Qualifier noun

ActionSpecifier Head words = verb , noun
DoubleAction ::= (DirectAction ActionOnObject)

Head words from DirectAction and/or ActionOnObject
ActionSpecifier ::= (adjective adverb preposition Qualifier noun)*
PropertyCheck ::= ”is” Qualifier (adjective noun)

ActionSpecifier Head word = adjective noun
Transformation ::= Source TransformOp Target Head words from Source and Target
Source ::= Qualifier (adjective noun) Head word = adjective noun
Target ::= Qualifier (adjective noun) Head word = adjective noun
TransformOp ::= ”to” ”2”

Figure 3. Grammar for the language of the function identifiers. The main classes of identifiers are in bold face, and
head words are specified for them.

4 Syntactical standardization

The structure of program identifiers, i.e., the organiza-
tion of the words in each identifier according to their gram-
matical function, can also be standardized. A grammar can
exploit the classification of identifiers according to the kind
of properties they are intended to express, and for each iden-
tifier category (main class in the following), a grammatical
structure is defined, which specifies the ordering of differ-
ent words (verbs, nouns, etc.) and the places where optional
terms can be inserted (qualifiers, context specifiers, etc).
A grammar for program identifiers can be introduced as

a company standard. A second approach is to derive it from
existing code, by selecting “good” examples and using them
as the basis for the grammar, and then to enforce its usage
within the company. We experimented the latter approach,
trying to derive a grammar for the identifiers of functions
from the 10 C programs in Table 1. We concentrated on
the C language and on the identifiers of function names, but
the same approach can be easily applied in the context of
a different programming language and/or different kinds of
identifiers.
An initial grammar was first produced by simply reading

several examples of function identifiers and trying to model
the features that seemed to recur more frequently. The
grammar was then refined through successive iterations. On
each iteration the performances of the grammar were evalu-

ated in terms of coverage and ambiguity, and proper correc-
tive actions were taken to keep their improvement balanced.
The coverage of a grammar for a non formal language is the
ratio of strings of the language for which at least one syntac-
tic derivation can be obtained from the grammar. The gram-
mar ambiguity is the possibility to produce a given string of
the language with more than one syntactic derivation. In-
creasing coverage and decreasing ambiguity are contrasting
objectives, to be carefully balanced: although a grammar
which does not impose many constraints on the identifier
structure may in principle cover a high number of cases, it
is likely to be ambiguous and of little usage in the improve-
ment of the identifier structure.
After two major iterations on the initial grammar (and

several micro-iterations), the productions in Figure 3 re-
sulted. The meta-symbols used in Figure 3 have a straight-
forward interpretation: [] are used for optional symbols,
for the alternatives, an exponent gives the number of repe-
titions, while * indicates an arbitrary number of repetitions.
Terminal symbols (tokens in the following) are represented
through a lexical type inside angular brackets or directly as
strings inside double quotes. Head words, shown within
curly brackets, are the terminal symbols of the production
holding relevant semantic information.
According to the grammar in Figure 3, a function iden-

tifier may be prefixed with an optional, possibly qualified,
context, representing information on the general operating

Identifying*Poor*Quality*Identifiers

• Other*types*of*measures

spelling*errors:

useless*type:

Examlpe

String nameString

overloaded*identifiers: saveAndPrint

• Identified*using*POS*analysis,*grammatical*
relations,*spell*checker,*identifier*
containment

T
EC

H
N
IQ

U
E

Identifying*Poor*Quality*Identifiers

• Case*study*with*quantitative*and*qualitative*
analyses*

• Precision*of*detected*poor*quality*identifiersE
V
A
LU

A
T
IO

N

Identifying*Poor*Quality*Identifiers

• Semantic*relations:*WordNet*or*manual*

• POS*tagging:**

• Minipar*or*manual*

• WordNet*

• Spell*checker:*Jazzy

TO
O
LS

*U
SE

D

Identifying*Naming*Inconsistencies
• Task:*Identify*entities*where*the*name*is*inconsistent*
with*the*type,*functionality,*or*documentation.**

• Examples:*

• method*named*isValid*with*return*type*void*

• method*named*
isNavigateForwardEnabled*documented*
as*backward*navigation*

• method*named*iterator*whose*
implementation*is*only*creating*and*returning*an*
object

SU
B
TA

SK

Identifying*Naming*Inconsistencies

• Project*bytecode**

• Source*code

IN
P
U
T

Identifying*Naming*Inconsistencies

• Inconsistencies*

• Suggested*solutionO
U
T
P
U
T

Identifying*Naming*Inconsistencies

• Splitting

P
R
E
P
R
O
C
ES

SI
N
G

Identifying*Naming*Inconsistencies

• Contrast*the*name*and*type*of*an*entity

set*method*returns: Dimension
setBreadth(..)

opposite*name*and*
type:

EnterTransport
exitTransport(..)

says*many,**
contains*one:

boolean statistics

T
EC

H
N
IQ

U
E

Identifying*Naming*Inconsistencies

• Contrast*the*name*and*comment*of*an*entity

opposite*name*and*comment:

//*…*default*exclude*…*
String INCLUDE_NAME_DEFAULT

• Defined*through*a*grounded*theory*approach*

• Identified*using*POS*analysis,*general*
ontology,*grammatical*relations

T
EC

H
N
IQ

U
E

Identifying*Naming*Inconsistencies

• Contrasting*the*name*and*implementation*of*
an*entity

 
public Iterator iterator() throws

DomainRegistryException{…}

Semantic*profile*of*an*“iterator”*method: 
These*methods*often*call*other*methods*with*the*same*name*and*
create*objects.*They*never*return*void,*write*parameter*values*to*fields*
or*call*themselves*recursively,*and*very*rarely*write*to*fields*or*return*
parameter*values,*and*rarely*have*parameters,*contain*loops,*use*local*
variables,*do*runtime*typeRchecking*or*casting,*return*field*values,*have*
branches*or*have*multiple*return*points.*

T
EC

H
N
IQ

U
E

Identifying*Naming*Inconsistencies

• Contrasting*the*name*and*implementation*of*
an*entity*(cont.)

public void isCaching(boolean value) {
this.caching = value; }

Name:*isR<adjective>
Implementation:*setR<adjective>:**
returns*void,*writes*field,*parameter*to*field.

isCaching => setCaching

T
EC

H
N
IQ

U
E

Identifying*Naming*Inconsistencies

• Contrasting*the*name*and*implementation*of*
an*entity*(cont.)*

• Defined*empirically*

• Identified*using*POS*analysis

T
EC

H
N
IQ

U
E

Identifying*Naming*Inconsistencies

• Detection*precision*

• Developers’*perceptionE
V
A
LU

A
T
IO

N

Identifying*Naming*Inconsistencies

• Semantic*relations:**

• WordNet*

• POS*tagging:**

• WordNet*

• Stanford’s*POS*Tagger

TO
O
LS

*U
SE

D

Building*Software*Ontologies

✓ Domain*ontology*

✓ Identifying*semantically*related*words

TA
SK

Extracting*Domain*Concepts

• Task:*automatically*extracting*domain*concepts*
and*relations*from*source*code**

• Examples:

filtering. Section III presents the case study with results
and discussion. Related works are presented in Section IV,
followed by conclusion and future works in Section V.

II. CONCEPT FILTERING

In this section, we summarize the approach for automated
ontology recovery that we proposed in a previous work [6]
and we motivate the need for concept filtering, applied to the
output of such an approach. The interested reader can find
more details about the rules used for ontology recovery in our
previous publication [6]. In the present paper, we focus on the
concept filtering step that is required after the initial ontology
has been produced, rather than the initial ontology production.

Ontology of a program can be constructed manually [10],
[11] or recovered automatically [2], [6]. In our previous
work [6], we have proposed and demonstrated an approach
which can be used to automatically build a program’s ontology
by exploiting the natural language information captured in the
identifier names. The steps we used in the proposed approach
are summarized below. One property which characterizes an
ontology is its level of formality. Based on this property,
an ontology can vary from a simple taxonomy with almost
no formalization, to one which uses a rigorously formalized
theory [12]. Our ontology is in between these two extremes,
since it uses a set of relations that connect concepts, but it does
not introduce constraints upon such relations. In the literature,
this is often referred to as a concept map. In the rest of the
paper, our use of the term ontology can be regarded as a
synonym for concept map.

Our approach [6], which uses natural language parsers
for extracting ontology from identifier names consists of the
following steps:

1) Creating term list: A term list is created by splitting class,
attribute and method identifier names using camel casing
and/or underscore. Hungarian notations are removed prior
to splitting, if they are used in the program element
names. Terms which match commonly known abbrevi-
ations or contractions are automatically expanded. The
expansion of unknown abbreviated or contracted terms
can be expanded using the approaches proposed in [13]–
[16].

2) Generating candidate sentences: Natural language parsers
such as Minipar 1 uses sentences as their input. Incom-
plete sentences such as those formed from the terms in
the identifiers highly reduced the accuracy of parsing.
Hence, we have defined rules based on the entity type
(class, attribute, method) to construct candidate sentences
from the splitted terms.

3) Sentence selection: The candidates proposed in the pre-
vious step are parsed and a sentence is automatically se-
lected for concept extraction based on a set of precedence
rules which depend on the result of the parse tree.

4) Extract concepts and relations: The terms identified as
noun and noun phrase by the parser are used as concepts

1http://webdocs.cs.ualberta.ca/ lindek/minipar.htm

in the ontology while the dependency relation among the
terms is mapped to a set of ontological relations. Verbs
are also used as ontological relations. Minipar is used for
parsing and identifying the lexical category of the terms
in steps (3) and (4).

Following the above steps, the ontology shown in Figure
2 can be extracted for class MailSender (see Fig. 1) of a
MailMerger program.

C l a s s m a i l S e n d e r {
i n t p o r t ;
S t r i n g s e r v e r ;

.
void s t a r t () ;
void s e t P o r t () ;
void s e t S e r v e r () ;

.
} ;

Fig. 1: Example: MailSender class of program MailMerger

Fig. 2: Ontology extracted for the MailSender class

The concepts in the ontology built using our approach
are composed of both problem concepts and implementation
concepts, as they are captured in the source code. In the
example given above, we have mailMerge and mailSender
concepts from the problem domain, and port and server from
the implementation. The size of the ontology extracted is
also directly proportional to the size of the program. For
larger systems, the ontology extracted may become very
large, thus reducing the support it can give for understanding
the domain knowledge captured in the source code. In fact,
many implementation details about the adopted algorithms
and data structures tend to corrupt the information in the
recovered ontology. This is because identifiers include terms
that refer to data structures (e.g., arrays, lists), protocols, GUI
elements (e.g., button, canvas, etc.), algorithms and specific
components used in the implementation (e.g., SQL database).
As a result, the recovered ontology might be very large, but
only a relatively small portion of it conveys useful information
about the domain. This motivates the present work, aimed at
filtering the ontology recovered by means of identifier analysis,
in order to obtain a smaller ontology, better focused on domain
concepts and relations.

A. Filtering techniques
To filter domain concepts from the extracted ontology, we

have used the IR based techniques which are described in the
following paragraphs.

TA
SK

Extracting*Domain*Concepts

• Source*code*

• Documentation*(e.g.,*user*manuals,*web*
sites)

IN
P
U
T

Extracting*Domain*Concepts

• Domain*concepts*and*ontological*relationsO
U
T
P
U
T

Extracting*Domain*Concepts

• Splitting*

• Abbreviation*expansion*

• Stop*words*removal*

• Stemming

P
R
E
P
R
O
C
ES

SI
N
G

Extracting*Domain*Concepts
• Hypernym/hyponym**relations*using*the*
longest*common*prefix

T
EC

H
N
IQ

U
E Step Identifier 1 Identifier 2

updateSalomeConf updateProjectConf
Tokenization update, Salome, Conf update, Project, Conf
POS tagging (update,VV),(Salome,NN),(Conf,NN) (update,VV),(Project,NN),(conf,NN)

Dependency sorting (update,VV),(conf,NN),(salome,NN) (update,VV),(conf,NN),(project,NN)
Lexical expansion (update,VV),(conf,NN)

Lexical relations hypo(updateSalomeConf,updateConf)
hypo(updateProjectConf,updateConf)

Lexical view

(update,VV)(Conf,NN)

(update,VV)(Conf,NN)(Salome,NN) (update,VV)(Conf,NN)(Project,NN)

Table II
ANALYSING TWO update conf IDENTIFIERS (FROM Salome-TMF)

We define n : PT 00 ! N the bijection that maps an element
pt to its corresponding node n 2 N . The edges in this
graph represent the hypo relations between the elements
of PT 00. We consider that an element pt1 is an hyponym
of an element pt2 if pt2 is a prefix of pt1. For instance,
it is reasonable to say that (List,NN),(Linked,VVD) is an
hyponym of (List,NN).

We first create nodes corresponding to every element
of PT 00. Then we apply the previous procedure lcp to
every combination of two elements from PT 00. Whenever
|lcp(pt1, pt2)| > 0 ^ |pt1| = |lcp(pt1, pt2)|, we create an
edge between n(pt1) and n(pt2).

Finally, we compute the transitive reduction of G [5].
This transitive reduction, denoted by lv, is our lexical view.
Figure 2 shows the extract of a lexical view computed on
identifiers coming from the Salome-TMF software. In this
figure, nodes corresponding to the existing identifiers are
represented in white. The concepts extracted during the lex-
ical expansion are represented with a non-white background.

F. Examples
In this section, we show several small lexical view com-

putation examples. We took these examples from real world
software identifiers. Table I shows the lexical view computed
from only two class identifiers coming from the Salome-
TMF program: TestWrapper and ManualTestWrapper. In
this table, results of the successive steps are given in the
different rows. To assess if the produced lexical view was
relevant, we looked in the code of Salome-TMF. There, we
saw that the class ManualTestWrapper is indeed a subclass
of TestWrapper.

Table II shows the lexical view computed on only two
operation identifiers updateSalomeConf and updateProject-
Conf extracted from the same interface (namely ISQL-
Config) of Salome-TMF. Here, the process extracted a
updateConf concept not initially present in the identifiers.
By checking the class implementing this interface (named
SQLConfig), we remarked that these two operations call an-
other operation, updateConf, defined only in the SQLConfig

class. That clearly shows that our approach is able to create
relevant new concepts from the linguistic information found
in identifiers.

IV. VALIDATION

We validate the results given by our approach by running
two different experiments. First, we assess the results given
by the natural language processing (NLP) techniques we
used in our approach (tokenization, part-of-speech (POS)
tagging and dependency sorting). This experiment is given
in Section IV-A. Second, we extracted lexical views from
several real world softwares. We assess the quality of these
views by the use of metrics. This experiment is described in
Section IV-B. In Section IV-C we discuss the limits of our
approach as well as its potential applications.

A. Natural language processing techniques
The goal of this experiment is to check whether the NLP

techniques we used in our approach give satisfying results on
identifiers from the real world. By NLP techniques, we refer
to the tokenization, POS tagging and dependency sorting
steps. For this purpose, we established a list (shown in Table
III) of 24 real Java programs. In this experiment, we want
to assess the efficiency of our NLP techniques on every
kind of identifiers. Therefore, we drew at random from every
program of our corpus 5 classes, attributes and operations
identifiers. After this operation, we had 120 class identifiers,
120 attribute identifiers and 120 operations identifiers, for a
total of 360 identifiers. With the help of NLP experts, we
segmented manually those identifiers. Then, we manually
affected parts-of-speech to the different segments. Finally,
we performed the dependency sorting by hand. This set of
360 identifiers manually curated is our test corpus.

For the sake of the clarity, we split our set of 360
identifiers I in three sets I

k

, k 2 (C,A,O). C stands for
the classes, A for the attributes and O for the operations.
The different I

k

contain the identifiers of type k. In this
experiment, we will prefix by m a function to indicate that its
result has been computed manually. To show the efficiency

lir
m

m
-0

05
31

80
7,

 v
er

si
on

 1
 -

3
N

ov
 2

01
0

Extracting*Domain*Concepts

• Sentence*templates*based*on*constraints*for*
different*types*of*entities*

• Example:*method*addPanelField*defined*in*
class*MergeGui*generates*sentence:

“Subjects*add*panel*field”
Rule idClass identifier Generated sentence Constraint

CR1 C = hT1i T1 “is a thing” T1 is a noun
CR2 C = hT1i T1er “is a thing” T1 is a verb
CR3 C = hT1, T2, . . .i T1T2 . . . “is a thing” T1 is a noun
CR4 C = hT1, T2, . . .i T1ing T2 . . . “is a thing”T1 is a verb

Rule idMethod identifier Generated sentence Constraint
MR1 M = hT1i “subjects” T1 “object” T1 is a verb
MR2 M = hT1i “subjects get” T1 T1 is a noun
MR3 M = hT1, T2, . . .i “subjects” T1T2 . . . T1 is a verb
MR4 M = hT1, T2, . . .i “subjects get” T1T2 . . . T1 is a noun

Rule idAttribute identifierGenerated sentence Constraint
AR1 A = hT1i T1 “is a thing” T1 is a noun
AR2 A = hT1i T1er “is a thing” T1 is not a past

tense verb, or
T1 is a past tense
verb and A is not
of Boolean type

AR3 A = hT1i T1 “subjects are things” T1 is a past tense
verb and A has a
Boolean type

AR4 A = hT1, T2, . . .i T1T2 . . . “is a thing” T1 is a noun
AR5 A = hT1, T2, . . .i T1ing T2 . . . “is a thing” T1 is a verb

TABLE I
RULES TO GENERATE SENTENCES FROM TERM LISTS

of the candidate sentences. Minipar can be used for this
purpose. Once parse trees are available, we apply the following
selection criteria in the following order:
a. If only one of the parsed sentences have a U in the result,

select the one without U. When Minipar is not able to
identify a term in a sentence, U(Unknown) is reported.

b. If both sentences do not have a U and the source of the
terms is a method, the method name is checked against the
attributes of the enclosing class. If a match is found, the
sentence with the verb get is selected.

c. If both sentences do not have a U, select a sentence based
on the frequency of the role of the first term of the list (e.g.,
verb and noun) in the sentence. The highest frequency role
is selected, with the frequency of each role obtained from
WordNet.

d. If both sentences do not have a U, the sentence with
user defined higher priority is selected. If the sentence
was generated for a method, the verb role is given higher
priority. Otherwise, the noun role is preferred.

e. If both sentences have a U, apply selection criterion d.
For example, method read from the running example gen-

erates two candidate sentences: S1 = “subjects read object”
and S2 = “subjects get read”. These two sentences are parsed
correctly (with no U in the parse tree). The term read does not
appear in the class attribute names. According to WordNet, the
frequency of use of the term read as a verb is much higher
than the frequency of the noun. Hence, based on criterion 3
S1 is selected for further analysis.

4. Extracting concepts and relations: The concepts which
are used in building the ontology are derived from the nouns in
the term lists. The ontological relations are obtained by map-
ping the linguistic relations in the dependency tree produced
by Minipar to ontological relations. The linguistic relations
of interest are obj which is a natural language dependency

Fig. 2. Mapping for relations obj and NN in “subjects add panel field”

relationship between a verb and a noun that plays the role
of object, and NN and mod which are natural language
dependency relationships between nouns or adjectives and
nouns.

The target ontological relations and the corresponding nat-
ural language dependency relations to which they are mapped
are described below.

• isA: used to connect general and more specific concepts.
It is derived from NN and mod linguistic relations.

• <verb>: a context specific relation between a concept
and the object on which the verb acts. The type of relation
identified between the concept and the object is taken
from the term that plays the role of a verb which, in this
case, is a non-accessor verb. The linguistic relation, which
corresponds to it, is obj. If the list of terms contains only
one verb, the <verb> relation is between the program
and class name. While, when the list contains a verb and
an object, the relation is between the class name and the
object.

• hasProperty: is a relationship between a concept and its
properties. It is derived from the linguistic dependency
relation obj between an accessor verb and an object.

In the sentence “subjects add panel field” constructed from
our running example (Figure 1), two concepts, panel field
and field, are generated and the NN natural language relation
between panel and field is mapped to an isA relation in the
ontology, originating isA(Panel field, Field) (see Figure 2).
The object in the sentence is associated with the concept
Panel field. The enclosing class for the method addPanelField
is associated with the concept Merge gui. Hence, a context-
specific relation add(Merge gui, Panel field) is created in the
extracted ontology.

III. CASE STUDY

To assess the support our approach provides to program-
mers, we have conducted a case study in the context of
concept1 location. In this regard, we have formulated two
research questions:

RQ1: Do the extracted ontology concepts contribute to increas-
ing the precision of programmer’s queries formulated for
concept location?

1Ontology concepts should not be confused with programmers’ concepts
to be located in the code. We qualify the first term as ontology concept to
disambiguate when necessary.

T
EC

H
N
IQ

U
E

Extracting*Domain*Concepts

• Filter*the*ontology*using*terms*based*on:*

• keywords*

• pLSI*

• LDA*

• A*concept*is*considered*as*a*domain*concept*
if*all*the*terms*in*the*concept*name*are*
matched

T
EC

H
N
IQ

U
E

Extracting*Domain*Concepts

• Precision*of*the*POS*tagging*

• Number*of*connected*components*

• Case*study:*navigating*the*concepts*for*query*
reformulation*in*the*context*of*bug*location*

• Precision*and*recall*of*the*extracted*domain*
concepts*compared*to*a*gold*set**

• Qualitative*analysis

E
V
A
LU

A
T
IO

N

Extracting*Domain*Concepts
• POS*tagging:**

• Minipar*

• WordNet*

• Grammatical*relations:**

• Minipar*

• TreeTagger*

• Topic*modeling:*Dragon*Toolkit

TO
O
LS

*U
SE

D

Identifying*Semantically*Related*Words

• Task:*Identifying*pairs*of*words*that*are*semantically*
related,*e.g.,*same*or*opposite*meaning*

• Examples:*

• call*R*invoke*

• size*R*capacity*

• serialize*R*deserialize*

• header*R*trailer*

• makeFullMap*R*makeEmptyMap

SU
B
TA

SK

Identifying*Semantically*Related*Words

• Project*description*and*tags*extracted*from*a*
hosting*site*

• Source*code

IN
P
U
T

Identifying*Semantically*Related*Words

• Similar*words*

• Ranked*list*of*similar*tagsO
U
T
P
U
T

Identifying*Semantically*Related*Words

• Splitting**

• Stop*words*removal*

• StemmingP
R
E
P
R
O
C
ES

SI
N
G

Identifying*Semantically*Related*Words

• Similarity*between*terms*(VSM*with*tfRidf)*

• Hierarchical*taxonomy*of*tags*using*based*on*
the*similarity*between*terms*using*a*
clustering*algorithm

II. PRELIMINARIES

In this section, we describe preliminary information on
software tagging, and the k-medoids clustering algorithm.

A. Tagging Software Engineering Data

Many project hosting sites, such as Freecode2, allow
developers to tag projects. On Freecode, information about
more than one hundred thousands of applications is pro-
vided. Each application has the link for download, the
description of the application, and tags indicating various
features of the application. Sample project information from
Freecode is shown in Figure 1. One can note that the Java
Apple Computer Emulator is tagged with Major, Bug fixes,
new features, LGPL, and computer emulator.

Figure 1. Project Information in Freecode

Users could create a Freecode account and provide in-
formation for an application. Freecode may be viewed as a
Wiki-like platform for developers to share information about
various applications. Such information provides a good
knowledge base for us to infer semantically related software
terms. In this study, we use the application descriptions and
tags in Freecode for our purpose.

B. K-Medoids Clustering Algorithm

This algorithm splits a set of data points to a pre-set
number (k) of groups (or clusters) so that the square error
is minimized [10]. It is partitional, i.e., each data point is
assigned to one and only one cluster. The algorithm requires
a similarity metric between data points, and it performs
many iterations as follows to decide the best way to split:

1) Randomly pick k points as cluster centers (medoids).
2) Assign each remaining data point (non-medoids) to the

cluster whose medoid is closest. This would form a
configuration (i.e., the initial k clusters).

3) Update the medoid for each cluster: choose the point
in the cluster that has the minimum total distance to all
other points as the new medoid.

4) Repeat steps 2-3 until no more change to the medoids.

III. PROPOSED APPROACH

Our approach mainly consists of two steps. First, we
calculate the similarity between every pair of terms. To this
end, we propose a similarity metric based on the documents
that are tagged by the terms. Second, based on the similarity
metric, we infer a taxonomy of the terms by repeatedly
applying k-medoids clustering on the terms.

2http://freecode.com/

A. Calculation of Similarity Among Terms

Inspired by information retrieval techniques, we use the
documents tagged by the terms to measure the similarity
between terms (i.e., tags). In our setting, each document is
a description of an application (cf. Figure 1). Two terms
can be similar if they tag many common documents. We
call this similarity the document similarity of two terms. In
addition, we measure the similarity of two terms based on
the textual contents of the documents tagged by them. We
call this similarity the textual similarity of two terms.

Let Doc(t) be the set of documents that are tagged with
term t. We define the document similarity of two terms t1
and t2 as dsim(t1, t2) =

Doc(t1)
⋂

Doc(t2)
Doc(t1)

⋃

Doc(t2)
.

For textual similarity, we calculate it as the cosine simi-
larity between the vectors representing the term frequencies
& inverse document frequencies of the words appearing
in the documents tagged by the terms as follows. First,
for each term t, we apply standard text pre-processing
techniques to Doc(t) to remove common stop words, such
as I, you, etc., and reduce words into their root forms
by stemming (e.g., both reading and reads are reduced to
read). The preprocessed set of documents is referred to as
DocP (t). Second, a vector, referred to as V (t), is created:
each element V (t)[w] in V (t) corresponds to one word w

appearing in DocP (t) together with its TF-IDF score (term
frequency & inverse document frequency) [13]. Third, given
two terms t1 and t2 and their word vectors V (t1) and V (t2),
the textual similarity between t1 and t2 is calculated as the
cosine similarity between V (t1) and V (t2):

tsim(t1, t2) =

∑

w∈V (t1)
⋂

V (t2) V (t1)[w] × V (t2)[w]
√

∑

w∈V (t1) V (t1)[w]2 ×
√

∑

w∈V (t2) V (t2)[w]2

Finally, we combine document and textual similarities to
derive the similarity score of terms t1 and t2. It is a weighted
sum of both similarities, where we use 0.5 for w1 and w2:

sim(t1, t2) = w1 × dsim(t1, t2) + w2 × tsim(t1, t2) (1)

B. Taxonomy Inference

We infer the taxonomy of software terms by performing
repeated k-medoids clustering. At each application of k-
medoids, we divide the set of terms into smaller groups.
Each of these groups can then be divided into even small-
er subgroups by applying k-medoids clustering again. K-
medoids clustering requires a similarity metric between two
data points (a data point is a term in our setting). This paper
uses the similarity metric presented in Equation (1).

The pseudocode of the approach is given in Algorithm 1.
The procedure CreateTaxonomy first initializes a dummy
root node by setting its label as “root”; it then recursively
applies k-medoids clustering at various levels in the taxono-
my by calling CreateLevels. We stop dividing a cluster
further if its size is less than minSize. In our evaluation,
we use minSize = 20 and k = 7.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

605

T
EC

H
N
IQ

U
E

Identifying*Semantically*Related*Words

• High*similarity*between*pairs*of*sentences*
containing*at*least*one*common*word

"None mounted file for this track.”  
"None accessible file for this track.”

“If you do not have apr_pool_clear
 in a wrapper”
“If you do not have apr_pool_destroy
 in a wrapper”.

T
EC

H
N
IQ

U
E

Identifying*Semantically*Related*Words

• High*similarity*between*pairs*of*sentences*
containing*at*least*one*common*word*(cont.)*

• Thresholds*are*used*to*filter*pairs*of*related*
words**

• Support*measure:*+1*when*a*pair*is*
discovered*from*different*sentences*

• Improved*similarity*using*idf

Empir Software Eng

called, with, interrupts, off>, we apply the Longest Common Subsequence (LCS)
algorithm to find the longest overlapping subsequences (not necessarily continuous)
between two sequences.

We define the similarity measure as

SimilarityMeasure = Number of Common Words in the Two Sequences
Total Number of Words in the Shorter Sequence

If the similarity measure of a pair of word sequences is greater than or equal to the
threshold (whose default value is 0.7 for the comment-comment context) and not 1
(meaning that the two sequences are identical), we extract rPairs from the differences
between the two subsequences.

Our technique can find semantically related phrases, not only semantically related
words. For example, from the sequences <get, a, nodes’s, parent > and <get,
a, nodes’s, left, child >, we can find that the longest common subsequence of
these two sequences is <get, a, nodes’s >, and that phrases/words (parent, left child)
are semantically related, because the SimilarityMeasure is 0.75, which is greater than the
default threshold.

In addition, we can find more than one rPair from two sequences. For example,
from the sequences <an, iovec, to, store, the, headers, sent, before, the, file>
and <an, iovec, to, store, the, trailer, sent, after, the, file>, we can infer two
rPairs (header, trailer) and (before, after).

In addition to the threshold, three additional parameters are used to control the
rPair extraction process: shortest, longest, and gap. Our technique only analyzes word
sequences whose length is greater than or equal to shortest and less than or equal to
longest, where sequence length is defined as the number of words in a sequence. Our
technique only performs pairwise comparisons between two sequences whose length
difference is gap or less.

2.4 Refining Semantically Related Word Pairs

We finally refine the detected rPairs. First, the rPairs in such format, (<W1, W2>,
<W3, W4>) is separated into two rPairs, (W1, W3) and (W2, W4). Then we remove
rPairs that contain words in the stopword list, e.g., (a, the); and we use stemming3 to
remove word pairs with the same roots, e.g., (call, called). Stemming is not perfect,
e.g., Porter’s stemmer makes mistakes such as stemming ‘adding’ to ‘ad’ instead of
‘add’. However, it is widely used and works well for our experiments. We would like
to experiment with other stemmers in the future.

In addition, since the same rPairs may be discovered from multiple pairs of
sequences, we merge the word pairs as one rPair. For example, we can learn that
(interrupt, irq) is an rPair from the two relevant comments in Table 1, as well as the
two sequences <were, called, from, interrupt, handlers> and <called, from, irq,
handlers>. We consider it as one rPair only, and increase the support for this rPair.

3http://tartarus.org/martin/PorterStemmer/

T
EC

H
N
IQ

U
E

Identifying*Semantically*Related*Words

• Frequency*of*commentRcode*word*pairs*of*
main*action*verbs*for*methods

/** Searches an attribute.*/  
XMLAttribute findAttribute(…){…}

/** Cancels the current HTTP request.*/
void jsxFunction abort(){…}

T
EC

H
N
IQ

U
E

Identifying*Semantically*Related*Words

• Frequency*of*commentRcode*word*pairs*of*
main*action*verbs*for*methods*(cont.)*

• Filter*descriptive*leading*comments*

• Identify*documented*action*from*a*leading*
comment*

• Identify*the*main*action*from*the*name*of*
a*method

T
EC

H
N
IQ

U
E

Identifying*Semantically*Related*Words

• Precision*of*the*identified*pairs*of*words*

• User*study*evaluating*a*subset*of*the*
identified*pairs*on*a*Likert*scale.*

• Sensitivity*evaluation*for*thresholds*
(precision*and*recall)

E
V
A
LU

A
T
IO

N

Identifying*Semantically*Related*Words

• Stanford’s*POS*Tagger*for*comments*

• Custom*POS*Tagger*for*method*names*

• *WordNet

TO
O
LS

*U
SE

D

Generating*Documentation*Automatically

✓ Extracting*a*set*of*important*keywords*

✓ Generating*natural*language*sentences

TA
SK

Extracting*a*Set*of*Important*Keywords

• Task:*Identify*the*keywords*that*best*represent*
a*software*artifact*

• Example:*{“match”,*“text”,*“ignorecase"}

5.5 Summary of the Eye-Tracking Results
We derive two main interpretations of our eye-tracking

study results. First, the VSM tf/idf approach roughly ap-
proximates the list of keywords that programmers read dur-
ing summarization, with about half of the top 10 keywords
from VSM matching those most-read by programmers. Sec-
ond, programmers prioritize method signatures above in-
vocation keywords, and invocation keywords above control
flow keywords. We base our interpretation on the finding
that signature keywords were read more than other key-
words, invocations were read about the same, and control
flow keywords were read less than other keywords. In ad-
dition, the adjusted gaze time for method signatures (H1)
averaged 1.784, versus 1.069 for invocations (H7) and 0.924
for control flow (H4). An adjusted value of 1.0 for an area of
code means that the programmers read that area’s keywords
in a proportion equal to the proportion of keywords in the
method that were in that area. In our study, the adjusted
gaze times were greater than 1.0 for signatures and invoca-
tions, but not for control flow keywords. Our conclusion is
that the programmers needed the control flow keywords less
for summarization than the invocations, and the invocations
less than the signature keywords.

6. OUR APPROACH
In this section, we describe our approach for extracting

keywords for summarization. Generally speaking, we im-
prove the VSM tf/idf approach we studied in RQ1 using the
eye-tracking results from answering RQ2, RQ3, and RQ4.

6.1 Key Idea
The key idea behind our approach is to modify the weights

we assign to di↵erent keywords, based on how programmers
read those keywords. In the VSM tf/idf approach, all oc-
currences of terms are treated equally: the term frequency
is the count of the number of occurrences of that term in a
method (see Section 3.4). In our approach, we weight the
terms based on where they occur. Specifically, in light of our
eye-tracking results, we weight keywords di↵erently if they
occur in method signatures, control flow, or invocations.

6.2 Extracting Keywords
Table 2 shows four di↵erent sets of weights. Each set cor-

responds to di↵erent counts for keywords from each code
area. For the default VSM approach [26], denoted VSM

def

,
all occurrences of terms are weighted equally. In one con-
figuration of our approach, labeled Eye

A

, keywords from
the signature are counted as 1.8 occurrences, a keyword is
counted as 1.1 if is occurs in the a method invocation, and
0.9 if in a control flow statement (if a keyword occurrence
is in both a control flow and invocation area, we count it as
in control flow). These weights correspond to the di↵erent
weights we found for these areas in the eye-tracking study
(see Section 5.5). Eye

B

and Eye
C

work similarly, except
with progressively magnified di↵erences in the weights
These changes in the weights mean that keywords appear-

ing in certain code areas are inflated, allowing those key-
words to be weighted higher than other keywords with the
same number of occurrences, but in less important areas.
After creating the vector space for these methods and key-
words, we score each method’s keywords using tf/idf, where
term frequency of each term is defined by its own weighted
score, rather than the raw number of occurrences.

Table 2: The weight given to terms based on the
area of code where the term occurs.

Code Area VSM
def

Eye
A

Eye
B

Eye
C

Method Signature 1.0 1.8 2.6 4.2
Method Invocation 1.0 1.1 1.2 1.4

Control Flow 1.0 0.9 0.8 0.6
All Other Areas 1.0 1.0 1.0 1.0

6.3 Example
In this section, we give an example of the keywords that

our approach and the default VSM tf/idf approach generate
using the source code in Figure 3. In this example, where
VSM tf/idf increments each weight a fixed amount of each
occurence of a term, we increment by our modified weights
depending on contextual information. Consider the keyword
list below:

Keywords Extracted by Default VSM Approach

“textarray, text, match, o↵set, touppercase”

The term “textArray” occurs in 2 of 6902 di↵erent meth-
ods in the project. But it occurs twice in the region-

Matches(), and therefore the default VSM tf/idf approach
places it at the top of the list. Likewise, “text” occurs in 125
di↵erent methods, but four times in this method. But other
keywords, such as “ignoreCase”, which occurs in the signa-
ture and control flow areas, may provide better clues about
the method than general terms such as “text”, even though
the general terms appear often. Consider the list below:

Keywords Extracted by Our Approach

“match, regionmatches, text, ignorecase, o↵set”

The term“match” is ranked at the top of the list in our ap-
proach, moving from position three in the default approach.
Two keywords, “regionMatches” and “ignoreCase”, that ap-
pear in our list do not appear in the list from the default
approach. By contrast, the previous approach favors “toUp-
perCase”over“ignoreCase”because“toUpperCase”occurs in
22 methods, even though both occur twice in this method.
These di↵erences are important because it allows our ap-
proach to return terms which programmers are likely to read
(according to our eye-tracking study), even if those terms
may occur slightly more often across all methods.

public static boolean regionMatches(boolean ignoreCase,

Segment text, int offset, char[] match) {

int length = offset + match.length;

if(length > text.offset + text.count)

return false;

char[] textArray = text.array;

for(int i = offset, j = 0; i < length; i++, j++)

{

char c1 = textArray[i];

char c2 = match[j];

if(ignoreCase)

{

c1 = Character.toUpperCase(c1);

c2 = Character.toUpperCase(c2);

}

if(c1 != c2)

return false;

}

return true;

}

Figure 3: Source Code for Example.

395

SU
B
TA

SK

Extracting*a*Set*of*Important*Keywords

• Source*code*

• Execution*traces

IN
P
U
T

Extracting*a*Set*of*Important*Keywords

• Sets*of*keywords*that*best*represent*each**

• Class*

• Method*

• Execution*trace*segment

O
U
T
P
U
T

Extracting*a*Set*of*Important*Keywords

• Splitting**

• Stop*words*removal*

• StemmingP
R
E
P
R
O
C
ES

SI
N
G

Extracting*a*Set*of*Important*Keywords

• Compare*IRRtechniques*

• EyeRtracking*experiment*to*decide*on*the*
importance*of*terms*

• IRRtechniques:*VSM,*LSI,*LDA*

• Weighting*schemes:*tf,*tfRidf,*log,*and*binaryR
entropy

T
EC

H
N
IQ

U
E

Extracting*a*Set*of*Important*Keywords

• Developers*assessing*the*quality*of*the*
summaries*

• Comparison*with*manually*summarized*
artifacts

E
V
A
LU

A
T
IO

N

Generating*Natural*Language*Sentences

• Task:*Generating*natural*language*sentences*
summarizing*a*software*artifact.*

• Examples*

• Method*summary:*“Export*plan*component*to*
svg.”*

• Class*summary:*“An*AbstractPlayer*extension*for*m*
player*handlers.*This*entity*class*consists*mostly*of*
mutators*to*the*m*player*handler's*state.*…”*

• Release*note:*“New*class*SearcherLifetimeManager*
implementing*Closeable.*…”

SU
B
TA

SK

Generating*Natural*Language*Sentences

• Project*source*code/bytecode*

• Set*of*releases*

• Issue*tracker*

• Version*control*repository

IN
P
U
T

Generating*Natural*Language*Sentences

• Natural*language*sentences*representing**

• method*comments*

• class*comments*

• release*notes*

• commit*notes

O
U
T
P
U
T

Generating*Natural*Language*Sentences

• Splitting**

• Abbreviation*expansion

P
R
E
P
R
O
C
ES

SI
N
G

Generating*Natural*Language*Sentences

• Method*summaries*

• Statement*selection**

• Ending*statements*

• Statement*with*a*method*call*with*the*
same*action*

• Conditional*expressions*

• …

T
EC

H
N
IQ

U
E

Generating*Natural*Language*Sentences

• Method*summaries*(cont.)*

• Sentence*templates*

• E.g.,*method*call*template

T
EC

H
N
IQ

U
E

os.print(msg)

/* Print message to output stream */

acgon*theme*secondaryRargs 
and*get*returnRtype*[if*M*returns*a*value]*

action theme secondaryRargs

Generating*Natural*Language*Sentences

• Class*summaries*based*on*class*and*method*
stereotypes*

• Filtering*using*

• Stereotypes*

• AccessRlevelT
EC

H
N
IQ

U
E

Generating*Natural*Language*Sentences

• Class*summaries*based*on*class*and*method*
stereotypes*

• Text*generation*

• General*description*

• Stereotype*description*

• Behavior*description*

• Inner*classes*enumeration

T
EC

H
N
IQ

U
E

Generated text: It provides access to:
- audio files list.

Otherwise, we remove the verb and secondary arguments
from the phrase generated for the method to get the property
that is being accessed; then, it is concatenated to the lexicalized
form of the field that provides such property. For example:

Method signature: int getTrackNumber()
Stereotype: Property
Field accessed: Tag tag
Generated text: It provides access to:

- Track number from tag.

On the other hand, the only modification to the mutator
methods is the removal of the verb from the phrase generated
from its signature. In that way, we add only the fragment that
indicates the property which is being modified by the method.
For example:

Method signature: void setContext(Context c)
Stereotype Set
Generated text: It allows managing:

- context.

One exception to this rule occurs when the method name
consists of one verb only. Since the signature of the method
does not provide the properties that are being modified, we
move such methods in the third block and use the name of the
class as the theme in the generated phrase. The final
adjustment in this block is the transformation of the action of
the methods into its gerund form. For example:

Class declaration: public class CdRipper
Method signature: void stop()
Stereotype Command (mutator method)
Generated text: It also allows:

- stopping cd ripper.
Class: public class RepositoryHandler…
Method signature: void refreshRepository()
Stereotype Collaborator
Generated text: It also allows:

- refreshing repository.

Note that we do not use the fields that are being modified
by the mutator methods in the summary. After analyzing
several methods in different systems, we found that
modifications of the fields are better reflected by the signature
of the methods.

 Inner Classes Enumeration 4)
The last part of the summary is optional. It is only used

when the class declares inner classes. In such cases, the
following template is used:

It declares the helper classes <inner class1>, …,
and <inner classn>.

The final summary is created by concatenating the four
parts described above. Fig. 1. shows a complete summary
generated for the MPlayerHandler class from aTunes, which
consists of six fields and 23 methods. Nine of these methods
are classified as mutators and one as accessor. The rest of
them are spread in the creational, collaborational, and

degenerate categories. According to the stereotype
identification rules, this class is a Commander.

III. EVALUATION
The goal of the automatic summary of a class is to provide

developers with a quick overview of its main responsibility,
which can be easily read. Accordingly, we performed a study
involving potential users, in a manner similar to previous work
[4], in order to evaluate the following properties of the
generated summaries:

x Content adequacy: Is the important information about
the class reflected in the summary?

x Conciseness: Is there extraneous information included
in the summary?

x Expressiveness: How readable and understandable is
the summary?

For this study we asked 22 programmers to judge the
content adequacy, conciseness, and expressiveness of
automatically generated summaries for 40 Java classes.

A. Subjects and Objects of the Study
The study included 22 graduate students in computer

science: 11 from the University of Delaware, 5 from Wayne
State University, and 6 from Universidad Nacional de
Colombia. We surveyed their programming knowledge and
background. All of them reported good or very good

An AbstractPlayer extension for m player
handlers. This entity class consists mostly
of mutators to the m player handler's state.

It allows managing:
- mute;
- volume; and
- next with no gap.
It also allows:

- finishing m player handler;
- handling next;
- playing audio file f;
- stopping m player handler;
- playing m player handler; and
- handling previous.

Fig. 1. Fragment of the class MPlayerHandler from the aTunes system

and its automatically generated summary

27

Generating*Natural*Language*Sentences

• Class*summaries*based*on*class*and*method*
stereotypes

T
EC

H
N
IQ

U
E

…

Generated text: It provides access to:
- audio files list.

Otherwise, we remove the verb and secondary arguments
from the phrase generated for the method to get the property
that is being accessed; then, it is concatenated to the lexicalized
form of the field that provides such property. For example:

Method signature: int getTrackNumber()
Stereotype: Property
Field accessed: Tag tag
Generated text: It provides access to:

- Track number from tag.

On the other hand, the only modification to the mutator
methods is the removal of the verb from the phrase generated
from its signature. In that way, we add only the fragment that
indicates the property which is being modified by the method.
For example:

Method signature: void setContext(Context c)
Stereotype Set
Generated text: It allows managing:

- context.

One exception to this rule occurs when the method name
consists of one verb only. Since the signature of the method
does not provide the properties that are being modified, we
move such methods in the third block and use the name of the
class as the theme in the generated phrase. The final
adjustment in this block is the transformation of the action of
the methods into its gerund form. For example:

Class declaration: public class CdRipper
Method signature: void stop()
Stereotype Command (mutator method)
Generated text: It also allows:

- stopping cd ripper.
Class: public class RepositoryHandler…
Method signature: void refreshRepository()
Stereotype Collaborator
Generated text: It also allows:

- refreshing repository.

Note that we do not use the fields that are being modified
by the mutator methods in the summary. After analyzing
several methods in different systems, we found that
modifications of the fields are better reflected by the signature
of the methods.

 Inner Classes Enumeration 4)
The last part of the summary is optional. It is only used

when the class declares inner classes. In such cases, the
following template is used:

It declares the helper classes <inner class1>, …,
and <inner classn>.

The final summary is created by concatenating the four
parts described above. Fig. 1. shows a complete summary
generated for the MPlayerHandler class from aTunes, which
consists of six fields and 23 methods. Nine of these methods
are classified as mutators and one as accessor. The rest of
them are spread in the creational, collaborational, and

degenerate categories. According to the stereotype
identification rules, this class is a Commander.

III. EVALUATION
The goal of the automatic summary of a class is to provide

developers with a quick overview of its main responsibility,
which can be easily read. Accordingly, we performed a study
involving potential users, in a manner similar to previous work
[4], in order to evaluate the following properties of the
generated summaries:

x Content adequacy: Is the important information about
the class reflected in the summary?

x Conciseness: Is there extraneous information included
in the summary?

x Expressiveness: How readable and understandable is
the summary?

For this study we asked 22 programmers to judge the
content adequacy, conciseness, and expressiveness of
automatically generated summaries for 40 Java classes.

A. Subjects and Objects of the Study
The study included 22 graduate students in computer

science: 11 from the University of Delaware, 5 from Wayne
State University, and 6 from Universidad Nacional de
Colombia. We surveyed their programming knowledge and
background. All of them reported good or very good

An AbstractPlayer extension for m player
handlers. This entity class consists mostly
of mutators to the m player handler's state.

It allows managing:
- mute;
- volume; and
- next with no gap.
It also allows:

- finishing m player handler;
- handling next;
- playing audio file f;
- stopping m player handler;
- playing m player handler; and
- handling previous.

Fig. 1. Fragment of the class MPlayerHandler from the aTunes system

and its automatically generated summary

27

Generating*Natural*Language*Sentences

• Class*summaries*based*on*class*and*method*
stereotypes

T
EC

H
N
IQ

U
E

Generated text: It provides access to:
- audio files list.

Otherwise, we remove the verb and secondary arguments
from the phrase generated for the method to get the property
that is being accessed; then, it is concatenated to the lexicalized
form of the field that provides such property. For example:

Method signature: int getTrackNumber()
Stereotype: Property
Field accessed: Tag tag
Generated text: It provides access to:

- Track number from tag.

On the other hand, the only modification to the mutator
methods is the removal of the verb from the phrase generated
from its signature. In that way, we add only the fragment that
indicates the property which is being modified by the method.
For example:

Method signature: void setContext(Context c)
Stereotype Set
Generated text: It allows managing:

- context.

One exception to this rule occurs when the method name
consists of one verb only. Since the signature of the method
does not provide the properties that are being modified, we
move such methods in the third block and use the name of the
class as the theme in the generated phrase. The final
adjustment in this block is the transformation of the action of
the methods into its gerund form. For example:

Class declaration: public class CdRipper
Method signature: void stop()
Stereotype Command (mutator method)
Generated text: It also allows:

- stopping cd ripper.
Class: public class RepositoryHandler…
Method signature: void refreshRepository()
Stereotype Collaborator
Generated text: It also allows:

- refreshing repository.

Note that we do not use the fields that are being modified
by the mutator methods in the summary. After analyzing
several methods in different systems, we found that
modifications of the fields are better reflected by the signature
of the methods.

 Inner Classes Enumeration 4)
The last part of the summary is optional. It is only used

when the class declares inner classes. In such cases, the
following template is used:

It declares the helper classes <inner class1>, …,
and <inner classn>.

The final summary is created by concatenating the four
parts described above. Fig. 1. shows a complete summary
generated for the MPlayerHandler class from aTunes, which
consists of six fields and 23 methods. Nine of these methods
are classified as mutators and one as accessor. The rest of
them are spread in the creational, collaborational, and

degenerate categories. According to the stereotype
identification rules, this class is a Commander.

III. EVALUATION
The goal of the automatic summary of a class is to provide

developers with a quick overview of its main responsibility,
which can be easily read. Accordingly, we performed a study
involving potential users, in a manner similar to previous work
[4], in order to evaluate the following properties of the
generated summaries:

x Content adequacy: Is the important information about
the class reflected in the summary?

x Conciseness: Is there extraneous information included
in the summary?

x Expressiveness: How readable and understandable is
the summary?

For this study we asked 22 programmers to judge the
content adequacy, conciseness, and expressiveness of
automatically generated summaries for 40 Java classes.

A. Subjects and Objects of the Study
The study included 22 graduate students in computer

science: 11 from the University of Delaware, 5 from Wayne
State University, and 6 from Universidad Nacional de
Colombia. We surveyed their programming knowledge and
background. All of them reported good or very good

An AbstractPlayer extension for m player
handlers. This entity class consists mostly
of mutators to the m player handler's state.

It allows managing:
- mute;
- volume; and
- next with no gap.
It also allows:

- finishing m player handler;
- handling next;
- playing audio file f;
- stopping m player handler;
- playing m player handler; and
- handling previous.

Fig. 1. Fragment of the class MPlayerHandler from the aTunes system

and its automatically generated summary

27

…

Generating*Natural*Language*Sentences
• Release*notes*by*organizing*changes*hierarchically*and*by*
using*sentence*templates*

• Identifying*and*prioritizing*code*changes*from*the*
versioning*systems*

• Files*added,*removed,*moved*

• Classes*added,*removed,*renamed,*moved*

• Methods*changed*(signature,*visibility,*source*code,*or*
set*of*thrown*exceptions)*

• …*

T
EC

H
N
IQ

U
E

Generating*Natural*Language*Sentences

• Release*notes*by*organizing*changes*
hierarchically*and*by*using*sentence*templates*

• Sentence*templates*

• Deleted*file:*“File*<file*name>*has*been*
removed.”*

• Added*class:*class*summaries*(JSummarizer)

T
EC

H
N
IQ

U
E

Generating*Natural*Language*Sentences

• Release*notes*by*organizing*changes*hierarchically*
and*by*using*sentence*templates*

• Other*changes*considered*

• Licensing*

• Documentation*

• Libraries*

• Refactorings*

• Issues

T
EC

H
N
IQ

U
E

Generating*natural*language*sentences

• Release*notes*by*organizing*changes*
hierarchically*and*by*using*sentence*templates*

• Example

T
EC

H
N
IQ

U
E

Generating*Natural*Language*Sentences

• Developers*

• Accuracy*

• Content*Adequacy*

• Conciseness*

• Importance*

• InRfield*study

E
V
A
LU

A
T
IO

N

Generating*Natural*Language*Sentences

• Tools*used:**

• Software*Word*Usage*Model*(SWUM)*

• JSummarizer*for*generating*class*summaries

SU
B
TA

SK

Concept(Location

• Task:&determining&the&start&of&a&change&to&the&code&
based&on&a&change&request&

• Change&requests&are&most&often&formulated&in&
terms&of&domain&concepts&

• Examples:&&
• “Correct&error&that&arises&when&trying&to&paste&a&text”&
& ?>&find&the&location&where&the&concept&“paste”&is&
& implemented&in&the&code&
• “Extend&the&print&functionality&to&print&also&double?
& sided”&?>&locate&where&the&“print”&concept&is&&
implemented&and&extend&it

1

TA
SK

Concept(Location

• Flavors:&&
• Feature&location&
• Bug&location/localization&
• Concern&location

TA
SK

Concept(Location

• Source&code&
• Identifiers&
• Comments&&

• Level&of&document&granularity&
• File/class&
• Method/function&

• Query&
• Manual&

• Automatic&

IN
P
U
T

Concept(Location

• Ranked&list&of&code&elements&

• Needs&to&be&evaluated&manually&by&
developers&&

• Quality&of&output&dependent&on&quality&of&
source&code&naming&conventions/
comments&and&of&the&query

O
U
T
P
U
T

Concept(Location

• Text&normalization&(white&space&and&non?textual&
tokens&removal)&

• Splitting&
• Stop&word&removal&

• Stemming&

• POS&Tagging

P
R
E
P
R
O
C
E
SS

IN
G

Concept(Location

• TR(models:&&
• Vector&Space&Model&(VSM)&
• Latent&Dirichlet&Allocation&(LDA)&
• Latent&Semantic&Analysis&(LSA)&
• Okapi&BM25&and&BM25F&

• NLP:&
• Action?oriented&identifier&graph&(AOIG)&
• Contextual&search&using&POS&tagging,&phrase&
extraction&and&matching&(noun,&verb,&
prepositional&phrases)&
• Ontology&generation

T
E
C
H
N
IQ

U
E

• Methodology&
• Studies&with&developers&

• Developers&receive&a&change&request&and&perform&
concept&location,&assisted&by&a&particular&tool&we&
want&to&evaluate&

• Comparison&between&using&the&tool/approach&and&
not&using&it

Concept(Location
E
V
A
LU

A
T
IO

N

• Methodology&
• Reenactment&–&automated&evaluation&

• Mine&repositories&for&past&changes&
• Match&a&change&request&(i.e.,&bug&report&or&feature&
request)&with&patches&and&find&the&change&set&(i.e.,&
methods&or&classes&that&changed)&

• Use&the&change&request&as&the&starting&query&
• Success&is&achieved&when&one&item&in&the&change&set&
is&located&

• Comparison&with&previous&approaches&or&with&CL&
and&without&the&tool

Concept(Location
E
V
A
LU

A
T
IO

N

Concept(Location

• Metrics&
• IR&metrics:&Precision,&MAP,&MRR,&etc.&(Recall=1)&

• Effectiveness&=&Rank&of&first&relevant&code&element&
(approximation&of&developer&effort)

E
V
A
LU

A
T
IO

N

• Lucene&(VSM&implementation)&

• Mallet&(LDA&Implementation)&

• Dragon&Toolkit&(SVD,&LDA,&Porter&stemmer,&
Wordnet)

Concept(Location
TO

O
LS

&U
SE

D

• TR&techniques&require&configuration&
• Based&on&previous&work&in&IR&
• Based&on&previous&work&in&SE&
• Heuristics&based&on&empirical&evidence&

• Using&genetic&algorithms&to&automatically&configure&TR&
for&a&dataset&

• Hard&to&formulate&queries&
• Automatic&and&semi?automatic&query&reformulation&

Concept(Location
IS
SU

E
S&
A
N
D
&S
O
LU

T
IO

N
S

Concept(Location

• Combination&with&static,&dynamic,&historical&
analysis&

• Combining&results&of&different&IR&engines&

• Clustering&the&software/results&
• Adds&structure&to&the&results&

• Improvements&of&the&IR&engine&or&data&
• Smoothing&filters,&term&boosting,&etc.

IM
P
R
O
V
E
M
E
N
T
S

Traceability(Link(Recovery(

• Task:&recovering&conceptual&links&between&
different&types&of&artifacts&(source&code,&
documentation,&user&manuals,&tests,&
design&documents,&etc.)&

• Traceability:&the&ability&to&describe&and&
follow&the&life&of&a&requirement,&in&both&a&
forward&and&backward&direction&[Gotel&and&
Finkelstein&1994]

TA
SK

14

Traceability(Link(Recovery(

• Examples:&traceability&between:&
– Requirements&and&code&
– Design&and&code&
– Requirements&and&design&
– Requirements&and&test&cases&
– Design&and&test&cases&
– Bug&reports&and&maintainers&
– Manual&pages&to&code&
– Emails&to&code&
– Etc.

TA
SK

15

CL(vs.(Traceability(Link(Recovery

• Similarities:&
– Both&are&instances&of&the&concept.assignment.problem&
– Both&formulated&as&TR&problems&
– Similar&user&role:&validation&and&relevance&
feedback&

• Differences:&
– Different&input&and&output&?>&different&evaluation&
(recall&important)&

– Variety&of&software&artifacts&
– No&user&query

TA
SK

Traceability(Link(Recovery(

• Two&sets&of&of&software&artifacts&(source&and&
target)&

• Granularity&levels&(classes,&methods,&files,&
paragraphs,&etc.)

IN
P
U
T

Traceability(Link(Recovery(

• Ranked&list&of&artifact&pairs&–&candidate&links

O
U
T
P
U
T

Traceability(Link(Recovery(

• Text&normalization&(white&space&and&non?
textual&tokens&removal)&

• Splitting&
• Stop&word&removal&(language&specific&–&
different&for&English,&Italian,&etc.)&

• Stemming&

• POS&tagging&(keep&nouns)

P
R
E
P
R
O
C
E
SS

IN
G

Traceability(Link(Recovery(

• VSM&

• LSI&

• Probabilistic.models&

• LDA&

• Language&models&

• Jensen?Shannon&(JS)&Divergence&

• Etc.

T
E
C
H
N
IQ

U
E

Traceability(Link(Recovery

• Relevance&feedback&to&reformulate&query&

• N?grams&(2?grams&work&better)&

• Hierarchical&modeling&–&leverage&the&hierarchical&

organization&of&artifacts&

• Logical&clustering&to&discover&new&links

20

IM
P
R
O
V
E
M
E
N
T
S

Traceability(Link(Recovery(

• Methodology:&developers&analyze&the&ranked&
list&of&artifact&pairs&

– Analyze&the&entire&list&

– Use&a&cut.point&and&analyze&the&top&list&

– Use&a.threshold.and&analyze&the&top&list

E
V
A
LU

A
T
IO

N

Traceability(Link(Recovery(

• Cut.point:&
• Constant:&threshold&on&the&number&of&recovered&links&&
• Variable:&percentage&of&links&that&have&to&be&retrieved&

• &Threshold:&
• Constant:&a&widely&adopted&threshold&is&ε&=&0.70&
• Scale:&percentage&of&the&best&similarity&value&
between&two&artifacts.&

• Variable:&projected&from&[0,&1]&into&[min,&max],&where&
min&and&max&are&the&minimum&and&maximum&
similarity&values&in&the&ranked&list&

E
V
A
LU

A
T
IO

N

Traceability(Link(Recovery(

• Metrics&
– Recall&
– Precision&
– F?measure

E
V
A
LU

A
T
IO

N

Traceability(Link(Recovery(

• Lucene&(VSM&implementation)&

• Mallet&(LDA&Implementation)&

• Dragon&Toolkit&(SVD,&LDA,&Porter&stemmer,&
Wordnet)

TO
O
LS

&U
SE

D

Not(all(software(engineering(tasks(are(text(
retrieval(problems

25

Software(Categorization

• Task:&Assign&a&finite&set&of&categories&to&software&
applications.&Each&category&briefly&describes&a&
feature&of&the&application.&

• Examples:&

– Database&! Apache&Cassandra&

– Social&! Instagram&

– Build?management&! Apache&Maven

26

TA
SK

Software(Categorization

• Source&code&&

• Software&profiles&or&descriptions&

• Bytecode&(for&Java&applications)&

• API&calls

27

IN
P
U
T

Software(Categorization

• Relevant&categories&for&each&application&

• Groups&of&similar&applications&

• Similarity&between&two&applications

28

O
U
T
P
U
T

Software(Categorization

• Splitting&

• Stop&words&removal&

• Stemming

29

P
R
E
P
R
O
C
E
SS

IN
G

Software(Categorization

• IR&Techniques:&LDA,&LSI,&VSM&

• Classifiers:&Naïve&Bayes,&Decision&Trees,&SVM&

• Clustering&algorithms:&K?means

30

T
E
C
H
N
IQ

U
E

Software(Categorization

• Gold&set:&&

• Categorized&previously&assigned&to&applications&

• Developers´&opinion&about&the&correctness&of&
recommended&categories.&&

• Precision,&recall&and&F?measure.&

• %TP&and&%FP&for&classifiers

31

E
V
A
LU

A
T
IO

N

Defect&prediction

• Task:'Identify'entities'more'likely'to'be'faultyTA
SK

Defect&Prediction

• Project'source'code'

• Level'of'granularity'(class,'method)

IN
P
U
T

Defect&Prediction

• For'each'entity'predict''

• The'probability'of'having'at'least'one'fault'

• Whether'it'is'fault'prone'or'fault'free'

• The'number'of'faults

O
U
T
P
U
T

Defect&Prediction

• Splitting'

• Stop'words'removal'

• StemmingP
R
E
P
R
O
C
ES

SI
N
G

Defect&Prediction

• Lexical'metrics'(VSM'with'tfQidf,'LSI'with'tfQ
idf,'metrics'for'quality'of'identifiers)'

• Check'if'lexical'metrics'capture'different'
information'compared'to'structural'metrics'

• Prediction'models'

T
EC

H
N
IQ

U
E

Defect&Prediction

• Case'studies'

• Comparison'of'prediction'modelsE
V
A
LU

A
T
IO

N

Defect&Prediction

• Semantic'relations:''

• WordNet'

• POS'tagging:''

• Minipar

TO
O
LS

'U
SE

D

Bug&Triaging

• Bug'classification'

• Recommend'developer(s)''

• Summarization'of'bug'reports'

✓ Duplicate'bug'detection

TA
SK

Duplicate&Bug&Detection

• Task:'automatically'detect'bug'reports'concerning'
the'same'fault'

• Examples:'

• Bug'#21196:'“I'just'see'many'description'where'
people'continuously'requesting'google'for'
support'urdu'in'Andriod'…”''

• Bug'#20161:'“Hello'I’m'unable'to'read'any'type'
of'urdu'language'text'messages.'Please'add'
urdu'language'in'future'updates'of'android'…"

TA
SK

Duplicate&Bug&Detection

• 2'bug'reports'

• 1'bug'report

IN
P
U
T

Duplicate&Bug&Detection

• True'is'the'two'bug'reports'are'duplicate,'
false'otherwise'

• List'of'ranked'top'n'most'similar'bug'reports

O
U
T
P
U
T

Duplicate&Bug&Detection

• Splitting'

• Stemming'

• Stop'words'removal'

• Synonym'and'abbreviation'replacement'

• Spelling'error'correction

P
R
E
P
R
O
C
ES

SI
N
G

Duplicate&Bug&Detection

• Defining'metrics'based'on'the'topic'
distribution'(LDA)'and'machine'learning'
classifiers'

• VSM'with'cosine'similarity'(Dice,'Jaccard)

T
EC

H
N
IQ

U
E

Duplicate&Bug&Detection

• Evaluation:''

• accuracy''

• AUC''

• Kappa'

• recall'rate''

• interviews

E
V
A
LU

A
T
IO

N

Duplicate&Bug&Detection

• LDA:'MALLET

TO
O
LS

'U
SE

D

Team&Management

✓ Identify'distress'or'happiness'

• Characterize'personality'of'successful'people'

• Stack'Overflow'(SO)'users'

• Developers

TA
SK

Identify&Distress&or&Happiness

• Task:'Identify'sentiments/emotions'from'a'
written'communication'

• Examples:'

• “That’s'great'work'guys!”'(Joy)'

• “Who'are'the'stupid'people'who'manages'
this'group.”'(Negative'sentiment)

SU
B
TA

SK

Identify&Distress&or&Happiness

• Written'communication,'e.g.,''

• Mailing'lists''

• Issue'tracking'systems

IN
P
U
T

Identify&Distress&or&Happiness

• Sentiment'scores'(1'per'communication)'

• Emotions'(possibly'more'than'1'per'
communication)

O
U
T
P
U
T

Identify&Distress&or&Happiness

• Filter'out'automatically'sent'emails'

• Remove'quoted'parts'of'emails'threads'

• Filter'out'any'nonQnatural'language'textP
R
E
P
R
O
C
ES

SI
N
G

Identify&Distress&or&Happiness

• Automatically'assign'a'sentiment'score'per'
email'(the'most'extreme,'i.e.,'Max)'

• Manually'assign'emotions'to'issue'commentsT
EC

H
N
IQ

U
E

Identify&Distress&or&Happiness

• User'study''

• Feasibility'of'manually'detecting'emotions'
from'issue'tracking'systems'(interQrater'
agreement)'

• Precision'of'the'automatically'assigned'
sentiment'scores

E
V
A
LU

A
T
IO

N

Identify&Distress&or&Happiness

• SentiStrength

TO
O
LS

'U
SE

D

Present'and'Future'of'NLP''
and'TR'for'SE'

!
•  One!of!the!fastest!growing!research!areas!in!SE!

•  There!is!a!need!for!more!benchmarks!and!open!
data!to!support!comparison!to!previous!approaches!

•  Current!trends:!
•  Combining!different!approaches!for!be>er!
overall!results!

•  AdapAng!NLP!and!TR!to!the!properAes!of!
individual!SE!datasets!and!tasks!

Evalua6ng/Adap6ng'NLP'and'TR'for'SE'

•  PartFOfFSpeech!(POS)!tagging!
•  evaluaAng!preprocessing!templates!
•  comparing!POS!taggers!
•  technique!for!tagging!idenAfiers!

!
•  EnglishFbased!semanAc!similarity!techniques!

•  Stemming!

•  Tuning!TR!parameters!to!individual!SE!datasets!

Slides'and'Addi6onal'Material'

•  h>p://www.cs.fsu.edu/~shaiduc/TRNLP!

