
A Model to Detect

Readability Improvements 

in Incremental Changes



Key Results

We developed a machine
learning model that is able to
correctly classify readability
commits with a precision of
79.2% and recall of 67%

Readability improving
commits are characterized
by changes to existing lines
of code rather than addition
of new lines of code.

Our model outperforms
existing SOTA approaches
at detecting readability
improvements in practice.



affects all parts of the software development process
impacts program comprehension

Fundamental aspect of software quality

Source Code Readability

Several models have been proposed to measure readability

One of the most requested metrics by software developers

Highly subjective



In Practice

Pantuichina et al. (ICSME '18) found that often developers perception of quality and
source code metrics are not aligned

Fakhoury et al. (ICPC '19) found that state of the art readability models are not able
to capture readability improvement in practice.

Current state of the art readability models are not effective at detecting
readability improvements in incremental changes



The ability to detect readability improvements in this scenario would allow
us to conceive better tools to support software developers in their day to
day work.

Readability and incremental changes

Most of the everyday work performed by developers involves incremental
changes



Can we use machine
learning to capture
readability
improvements in
practice?

RQ 1



We use a dataset of 2,665 commits from 76 engineered Java projects

Dataset

These commits consist of commits intended to improve readability as well as non-
readability related commits

Each commit is manually validated and detangled



Traditional source code quality
metrics such as Halstead Metrics.

Fine grained code changes

Poor programming practices/style
conformance using PMD and
Checkstyle

Detailed line diff metrics using RSM

Metrics



We split the data randomly into train & test sets

10-fold cross validation used on the train set for
model building process

Feature selection, model selection & hyperparameter
optimization all performed automatically via cross-
validation

Best configuration trained on entire training set, and
evaluated on holdout set

Model Building



RQ1 Results

Precision
Recall

F-1
Mathew's Correlation

ROC-AUC

69.4% 79.2%
59.3% 67%
63.9% 72.6%
0.41 0.39
70% 70%

CV Test

Our model is able to classify readability
improvements with a precision of 79.2%,
recall of 67% and MCC of 0.39 (fair)



RQ1 Results

Our model struggled with changes that affect only one line of code

In some instances, non-readability changes also included secondary
readability improvements



What features align
with developer's
perception of
readability
improvements in
practice? 

RQ 2



SHapley Additive
exPlanations (SHAP)

SHAP is a gametheoretic approach to measuring the contribution of each
feature to the predictions made by a machine learning model

For tree based methods, it provides an exact algorithm to determine the
contribution of each feature of the inputs

Able to identify both the magnitude and direction of the influence of a
feature on a given prediction



Readability improving commits tend to make changes to existing lines
of code rather than introducing new code.

Non-readability commits tend to introduce new lines of code and are
associated with a degradation of certain software quality metrics
(Halstead Effort, McCabe's Cyclomatic Complexity etc.)

RQ2  Results



How does the
proposed model
perform when
compared to state of
the art readability
models?

RQ 3



State of the art readability models

Scalabrino's Model - uses metrics that measure quality of source code
lexicon as a proxy for readability [1]

Dorn's Model - uses visual, spatial, alignment and linguistic aspects of the
source code [2]

Combined Model - proposed by Scalabrino et al. as a combination of multiple
state of the art readability models considering both linguistic and structural
aspects of source code [1]

[1] Scalabrino, S., Linares‐Vásquez, M., Oliveto, R. and Poshyvanyk, D., 2018. A comprehensive model for code readability. Journal of Software:
Evolution and Process, 30(6), p.e1958.
[2] Jonathan Dorn. A general software readability model. MCS Thesis. 2012.



RQ 3 Results

Precision
Recall

F-1
Mathew's Correlation

ROC-AUC

60% 64%
41% 47.14%
49% 54.47%
-0.01 0.07

49.46% 53.62%

Dorn Scalabrino Combined

62.2%
37%

46.96%
0.02

51.24%

79.2%
67%

72.6%
0.39
70%

Ours

Overall, our model outperforms existing
SOTA appraoches on all metrics

Moreover, all the SOTA models have
MCC < 0.1(low), while our model attains
0.39 (fair).



RQ 3 Results

Precision
Recall

F-1
Mathew's Correlation

ROC-AUC

60% 64%
41% 47.14%
49% 54.47%
-0.01 0.07

49.46% 53.62%

Dorn Scalabrino Combined

62.2%
37%

46.96%
0.02

51.24%

79.2%
67%

72.6%
0.39
70%

Ours

Qualitative investigation shows that SOTA
readability models struggled with
readability improvements where only
comments are changed.

SOTA models also did not check for style
violations unlike our proposed model,
which used data from Checkstyle and
PMD



Thank You



This figure shows the SHAP values
for the most important features (for
test set predictions)

The shading of each point indicates
the magnitude of the value of the
feature, while its location on the x-
axis indicates whether the
contribution of the feature was
positive or negative.

RQ2  Results


